
GRAPH COLORING ON THE GPU AND
SOME TECHNIQUES TO IMPROVE

LOAD IMBALANCE

SHUAI CHE, GREGORY RODGERS, BRAD
BECKMANN, STEVE REINHARDT

AMD
SPEAKER: DIBYENDU DAS

ASHES| MAY, 2015 2

GRAPH COLORING

 Graph coloring is a key building block for many graph applications

 Graph coloring presents load imbalance across GPU threads

 Its program behavior changes over time in different iterations

‒ Load distribution across threads

‒ Static approach usually is not effective

ASHES| MAY, 2015 3

GRAPH COLORING

 Label a graph so that no adjacent vertices have the same color

‒ We do not study optimal coloring in this work

ASHES| MAY, 2015 4

BASELINE COLORING ALGORITHM

 Randomization-based approach (baseline)

 Assign vertices with random values

 Repeat the following steps until all the vertices are colored

 Each thread checks if a vertex is a local maximum using random numbers

 If the vertex is a local maximum, assign the vertex a new color

 else ignore the vertex and evaluate it in the following iteration

ASHES| MAY, 2015 5

BASELINE COLORING ALGORITHM

 Issues of the baseline algorithm

‒ Different vertices have different degrees

‒ Load Imbalance across GPU threads. Short running threads have to wait for long
running threads, wasting compute resources and power

 We first apply workstealing to balance workloads across workgroups

‒ Each workgroup is associated with a work queue

‒ Each workgroup consists of multiple threads, each of which processes a vertex and its
neighborlist

‒ The workstealing algorithm uses a similar approach used by Tsigas and Cedermann
(GPU Computing Gems)

ASHES| MAY, 2015 6

WORKSTEALING

 Two basic operations in workstealing

Pop dequeues an element from the tail of the local queue
Steal dequeues an element from the head of a remote queue, when the local queue is
empty

ASHES| MAY, 2015 7

PERFORMANCE OF WORKSTEALING

 Less than 10% performance improvement

ASHES| MAY, 2015 8

WORKSTEALING

 Work stealing in the workgroup granularity only partially resolves
the overall load imbalance problem

 Significant imbalance exists within a workgroup, especially for unstructured
graphs (e.g., power-law graphs)

ASHES| MAY, 2015 9

A HYBRID APPROACH

 Vertex degree can be a heuristic to estimate the running time of a thread to
process a vertex and its neighborlist

 We color large-degree vertices first, so that they will not be evaluated in the
following iterations. Load imbalance across threads will be improved.

ASHES| MAY, 2015 10

HYBRID ALGORITHM

 Phase 1 (degree-based coloring)

 Precalculate degrees of all the vertices

 Repeat the following steps until a switching condition is met

 Each thread checks if a vertex is a local maximum using vertex-degree values

 If the vertex is a local maximum, assign the vertex a new color

 else ignore the vertex and evaluate it in the following iteration

 Phase 2 (randomization-based coloring)

 Repeat the following steps until all the vertices are colored

 Each thread checks if a vertex is a local maximum using random numbers

 If the vertex is a local maximum, assign the vertex a new color

 else ignore the vertex and evaluate it in the following iteration

Note: for Phase 1, we only color a vertex if and only if it is a local maximum and it is
the only local maximum in the neighborhood

ASHES| MAY, 2015 11

HYBRID ALGORITHM

 Degree-based coloring will get diminishing benefits because more and more
vertices will have smaller, same degrees (e.g. dip and coauthor). Thus, we
switch to randomization-based coloring

 Switch condition:

‒ No. of colorable of vertices using the degree-based approach is less than a threshold

 For example, no. of colorable vertices is not big enough to fit all the GPU cores

‒ For many unstructured graphs, most of the large-degree vertices can be colored in
only a few iterations.

ASHES| MAY, 2015 12

PERFORMANCE BENEFITS

 The hybrid algorithm is 23% faster than the baseline, randomization-based
approach for dip20090126, and 27% faster for coAuthorDBLP

 The hybrid algorithm is especially effective to color unstructured graphs

ASHES| MAY, 2015 13

ACTIVE VERTICES ACROSS ITERATIONS

 High-degree vertices are colored in the first few iterations. Load imbalance is
improved for the following iterations.

ASHES| MAY, 2015 14

IMPACT OF PHASE CHANGE

 The best case: switching at the 4th iteration for dip

 15% performance difference between the best and worst cases

 It is an open research question to determine the optimal switch point.

‒ Currently, some threshold value is used

ASHES| MAY, 2015 15

CONCLUSION AND FUTURE WORK

 This paper shows the cause of SIMD load imbalance when performing coloring

 We show workstealing offer only limited performance improvement, due to
significant imbalance within a workgroup

 We propose a hybrid 2-phase graph coloring algorithm with the combination of
degree and randomization-based strategies

 Future work includes:
‒ Extension to multiple machine nodes

‒ Evaluation with different data layouts and inputs

‒ Integration of this algorithm into other graph applications (e.g., independent set)

